Spectral analysis of product formulas for quantum simulation
نویسندگان
چکیده
Abstract We consider the time-independent Hamiltonian simulation using first order Lie–Trotter–Suzuki product formula under assumption that initial state is supported on a low-dimension subspace. By comparing spectral decomposition of original and effective Hamiltonian, we obtain better upper bounds for various conditions. Especially, show Trotter step size needed to estimate an energy eigenvalue within precision ϵ quantum phase estimation can be improved in scaling from 1/2 large class systems. Our results also depend gap condition simulated Hamiltonian.
منابع مشابه
Explicit spectral formulas for scaling quantum graphs.
We present an exact analytical solution of the spectral problem of quasi-one-dimensional scaling quantum graphs. Strongly stochastic in the classical limit, these systems are frequently employed as models of quantum chaos. We show that despite their classical stochasticity all scaling quantum graphs are explicitly solvable in the form E(n) =f (n) , where n is the sequence number of the energy l...
متن کاملThe Spectral Analysis Inner Product for Quantum Gravity
This submission to the Proceedings of the Seventh Marcel-Grossman Conference is an advertisement for the use of the " spectral analysis inner product " for minisuperspace models in quantum gravity. The following is intended to be an advertisement for what will be called the " spectral analysis construction " of a physical Hilbert space for cosmo-logical models. It contains no proofs, but instea...
متن کاملQuantum Formulas: A Lower Bound and Simulation
We show that Nechiporuk’s method [26] for proving lower bounds for Boolean formulas can be extended to the quantum case. This leads to an Ω(n/ log n) lower bound for quantum formulas computing an explicit function. The only known previous explicit lower bound for quantum formulas [27] states that the majority function does not have a linear–size quantum formula. We also show that quantum formul...
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولLifting Formulas, Moyal Product, and Feigin Spectral Sequence
It is shown, that each Lifting cocycle Ψ2n+1,Ψ2n+3,Ψ2n+5, . . . ([Sh1], [Sh2]) on the Lie algebra Difn of polynomial differential operators on an n-dimensional complex vector space is the sum of two cocycles, its even and odd part. We study in more details the first case n = 1. It is shown, that any nontrivial linear combination of two 3-cocycles on the Lie algebra Dif1, arising from the 3-cocy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: npj Quantum Information
سال: 2022
ISSN: ['2056-6387']
DOI: https://doi.org/10.1038/s41534-022-00548-w